
Dozble-Curved Shells of Flat Quad Meshes

Summary

Each free formed shell (blob shell) can be triangulated indeed, but quad plane meshes are more economical

(less cutting-waste, less joints, less buckling danger of interconnected structural panels). To avoid tall acute

meshes, shells of parallelograms, called “translational surfaces” are limited to be slightly curved, in contrast to

shells of trapezoids, called “scale-trans shells” that are also still restricted concerning the number and orienta-

tion of openings. My idea being applied for patents is to combine several slightly curved translational or scale-

trans surfaces into one shell of nearly each demanded shape. Its net can be generated by vaulting a basic poly-

gon or, circumscribing a basic polyhedron. These basic shapes define the curve’s planes.

Keywords:  double-curved surfaces, grid-shells, panellised shells, sail-vaults, cushion-roofs, domes, blobs

1. Introduction

The problems of a blob shell consisting of only one

or two scale-trans surfaces [1].are shown in Fig. 1:

There, the trapezoidal shape of the meshes is made

plain by a vertical projection onto a separate hori-

zontal plane. The right rear quadrant is a pure scale-

trans region: Curves consisting of chords, having

equal shapes but varying sizes, had been moved

downwards. Hereby, tall triangles meeting in a po-

lar point on the shell’s rear side have been avoided,

but many quads are arbitrary cut off and hereby

reduced into unfavorable triangles or pentagons.

Figure 1.  A  conventionally meshed blob

Figure 2.  Shells being meshed in a novel way

Besides, the shaping of the border regions of both

openings is interdependent: The anticlastic curva-

ture of the left opening’s region implies an inver-

sion of the frontal free border arc’s curvature,

causing weakness against buckling. Even an une-

qual scaling of single chords cannot solve this

problem.
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Because of this, a solution to generate different

regions or openings of a faceted shell more inde-

pendently from each other had to be found. This has

the positive side effect that regions of a shell can be

exchanged in order to reuse them in another con-

text, as can be seen in Fig. 2. Parts of different sorts

of shell shapes like sail-vault, cushion-roof, Isler-

shell, or blob can be combined in a single shell.

The blob shell in Fig. 2 (bottom, right) is an ade-

quate solution for the problems shown in Fig. 1.

This solution cannot be described before the end of

a series of examples leading from flat and symmet-

ric, to spatial and asymmetric configurations by

increasing complexity. On this way, as a good spin-

off effect, better solutions for flat cupolas or spheri-

cal domes are found.

The aim of this paper is to combine the versatility

of a net of triangular shell’s pieces having a large

scale with the regularity of a net of flat quad meshes

having a small scale.

2. Vaulting a Polygon

2.1  Sail-Vaults

The number of shell’s pieces is small at first: In Fig.

3 (top, left) a quarter of an usual translational shell

vaulting a rectangular basic polygon is copied and

bisected diagonally into quad-meshed triangular

shell’s pieces, called “sherds”. These sherds are

copied and then mirrored in the plane of their red

cutting line. By this, triangular meshes along the

cutting line, called “cut-triangles”, are fused in pairs

into new quad meshes, called “fusion-meshes”.

Figure 3.  composing sail vaults

Three times in Fig. 3, two sherds form a spatial

quadrangle. The quadrangle being shown in the

middle is a conventional one again, whereas the

upper and the lower symmetric one form a new

shell’s part being called “double-sherd”. Such dou-

ble-sherds can be combined to be part of a sail-vault

covering a basic polygon, that is, a regular hexagon

(top, right) and a regular triangle (bottom, right).

Sail-vaults of equal or varying forms can be com-

bined conventionally to become a vault system.

To be fused, adjacent meshes have to be coplanar

The magnified sherd in Fig. 3 (bottom, left) shows

black lines of altitude on each cut-triangle. Each

missing adjacent triangle of another sherd must

have an equally oriented line of altitude, in this

simple case, normally to the mirror plane. Each of

the cut-triangle’s borders, being called “cutting

chord” is a segment of a cutting line to be fused into

a “cut-fusion-line”. Here, the cut-fusion-line defines

the shape of all other curves. It is the “determining

curve” of each sherd and each shell of Fig. 3. Such

a curve is highlighted in other pictures too. By its

orange nodes, the sherd’s planes of curves inter-

secting at right angles are defined. The planes of

one curves’ set have to be parallel to the border’s

plane that includes an edge of the basic polygon.

The determining curve is a circle-arc being seg-

mented into equal chords. The determining curves

of all other examples of shells are circle arcs too, if

no other characteristics are mentioned.

Figure 4.  A sail-vault of scle-trans surfaces

The sail-vaults described before consist of sherds

each having a translational subdivision by chords of

plane curves. Figure 4 shows now a triangular sail-

vault of sherds each having a scale-trans subdivi-

sion. For each sherd, there are two sets of planes
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again. There is still one set of parallel planes, but

the planes of the other set are now disparallel: They

intersect all in one horizontal central yellow line.

The latter planes are visualised by opaque rectan-

gular plates radiating from that line and penetrating

the lower right-hand sherd. The advantage of this

centric scale-trans subdivision is the small number

of mesh patterns for mesh panels. Like on a globe

of meridians and parallels of latitude, each row of

one direction in such a sherd consists of equal

meshes. Now, the determining curve is a shell’s

border being situated within a sherd’s border plane

being part of the set of still parallel planes being

parallel to the polygon’s beige edge.

2.2  Cushion-Roofs

From each synclastic sherd, a beige anticlastic sherd

can be derived. In parallel, violet chords of the syn-

clastic sherd are transferred to the resulted sherd

and then cut by, or enlarged until the ground plane.

By this, a horizontal straight borderline is growing

as the new sherd’s cutting line. Consequently, the

plane of each mesh like the red one of an anticlastic

sherd is parallel to that of a corresponding mesh of

the neighbored synclastic translational sherd. The

sequence of corresponding meshes or, chords is

mirror-symmetric to the green border between both

inversely curved sherds.

Figure 5.  Composing and varying cushion-roofs

Each beige pair of symmetric anticlastic sherds

closes an arched lateral opening of a sail-vault. If a

sail-vault of Fig. 3 is enlarged on each side by such

a sherds’ pair, a cushion-roof of mixed curvature is

generated. The surface of a beige anticlastic sherds’

pair in a corner region of a cushion roof is tangen-

tial to the ground plane in the roof’s corner point.

The outline of the cushion-roof in plan is a flat

polygon having sides being straight-lined like that

of the initial sail-vault, being circumscribed by it.

Other cushion-roofs can be added to result in a

continuous undulated roof like in Fig. 5 below.

Along the straight borderlines, the triangular cut

meshes fuse in pairs into fusion-meshes again, but

the direction of stepwise rotation of the fusion-

mesh’s plane from one place to the next differs: The

rotational axes are now aligned in the (black) cut-

fusion-line itself, in contrast to these of a synclastic

double-sherd that all cross its cut-fusion-line. In

other words: The chain of fusion-meshes can be

considered to be twisted instead of bent.

Figure 6.  A roof covers a quadrangle having curved sides.

The border of the cushion roof in Fig. 6 is still

plane, but the sides of the outline polygon are

swinging, because the blue curves of the roof’s

translational nets are swinging. This is why both

determining curves of the included sail-vault are

spatial instead of, vertically plane like that one in

Fig. 3: Each fusion-mesh of Fig. 3, including its

cutting-chord as part of the determining curve and

each black line of altitude, is slightly rotated in plan

against the next fusion mesh by a constant angle.

Since chords and meshes are still corresponding in

pairs by parallelism, the yellow nodes of the green

border-arc between both inversely curved sherds are

turning-points of the blue swinging curves crossing

there.

Shells having curved borders in plan are exceptions.

They hardly can be combined modularly That is

why determining curves have to be plane normally.
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Hitherto, a straight-outlined cushion-roof was re-

stricted to cover only following polygons: a rectan-

gle or a lozenge, when it had been conceived as a

single translational surface; a trapezoid, when it had

been conceived as a single scale-trans surface.

However,  existing courtyards or public urban sites

often have irregular borders.

The shell of Fig. 7 covers an irregular straight-lined

quadrangle. Into this, the basic polygon of an in-

cluded blue sail-vault had been to be inscribed. The

green point exactly below the zenith is neither the

intersection point of diagonals nor the gravity point

of the basic polygon. Yet, in this quadrilateral case,

the diagonals of its circumscribing polygon inter-

sect there. Each plane of a sherd’s border is vertical.

Two times, a plane being defined by the zenith and

a roof’s corner point, is crossing the pink, vanish-

ing-point-like intersection point of enlargements of

two basic-polygon’s edges, as you can see in Fig. 7

(top, right). The black lines of altitude are parallel

to the nearest straight shell’s borderline. The orange

nodes of all cut-fusion-lines have equal altitudes, as

if they would define the ridges of a cloister vault

(bottom, left).

Figure 7.  A cushion-roof suited for an asymmetric context

3. Vaulting Cubes

The shells having shapes described before can now

be made completely of flat quad meshes. However,

because they are still flat, they are rather roofs than

buildings themselves like domes as steeply sloped

symmetrical shells are. To enlarge the novel gener-

ating principle towards more spatiality, domes shall

be composed of sherds too.

Two times, the upper part of Fig, 8 shows the quad-

ratic top polygon and the upper left transparent

eighth of an entire cube below. On this geometric

base, a sherd of the future dome will be generated..

The sherd will vault an isoceles right triangle being

an eighth of the solid cube’s top quadrat.

Figure 8.  Cubes define border’s planes of sherds or caps.

All three planes of the shell’s borders intersect in

one red reference point in the lower rear vertex of

the small transparent cube being the centrepoint of

the large solid basic cube. The planes of shell’s

borders are represented by opaque triangles. Two of

them being vertical are not colored; while the third

one being inclined is red colored like two other

triangles representing inclined planes for the same

set of curves. On the left half of Fig. 8, these in-

clined red planes are parallel; on the right, they

intersect in a horizontal yellow line being the lower

left rear edge of the small transparent cube. The

plane of the white determining curve being centred

in the red endpoint of this line is now perpendicular

to the nearest basic-polygon’s beige edge instead of

including it as it does in Fig. 4.

The three shell’s border’s planes act like kaleido-

scopic mirrors, when the first sherd is multiplied in

order to result into a cap. A quadrilateral cap covers

the top square of the left solid cube. In contrast to

the blue quadrilateral sail-vault included in Fig. 7,

the cap’s border-arc’s planes are not plumb to the

basic polygon. Another cap on Fig. 8, being trian-

gular, is centred in the cube’s spacediagonal. In

contrast to the triangular sail-vaults of Figs. 3 and 4,

its border-arc’s planes are not perpendicular to a

(not rendered) basic equilateral triangle being a face

of an octahedron here. Both new caps are not mod-

ules for vault-systems, but parts of one dome shell.
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The sherd’s borders of such a dome in Fig. 9 are

subdivided into four chords instead of three (Fig. 8)

or five (Figs. 1 – 6). The parallelism of the curve’s

planes facilitates the exact insertion of right-angled

cut-out openings as well as partition walls and floor

plates stiffening these openings. Most of the nodes

of the dome’s surface are not exactly positioned on

a sphere. Only the determining curve of each sherd

can be exactly circular, but the extremely slight

deviations elsewhere can be ignored.

The novel subdivision is an useful alternative to a

geodesic one. Not only cutting waste is reduced,

and acute-angled triangles or lozenges are avoided.

Additionally, the number of element patterns is

markedly smaller. Because of the option to cut out

openings being rectangular, a quad-meshed dome is

very advantageous compared to a geodesic one

especially when it is based on a cube [3].

Figure 9.  A small house and a dome of an observatory

Such a dome’s sherd resembles to the yellow “fun-

damental region” of a red Transpolyhedron’s Dual

[2]. However, no one facet, that is, quad mesh of

this region has parallel edges. Besides, its borders

can be composed only of 2, 4, 8, 16... chords be-

cause the generation process is quiet different: It is

iterative by so called explosions and an implosion.

In Fig 10 (top, left) an anticlastic sherd is derived

from a synclastic one like in Fig. 5, but both sherds

are based on cubes now. The anticlastic one can be

considered to base on an infinite polyhedron of

hollow cubes and hereby as a part of an infinite

surface similar to a Schwartz-surface, dividing

space into two interwoven halves like the infinite

cubic polyhedron does. To form this infinite poly-

hedron being represented in Fig. 10 by whole,

halved or quartered quadrats, two opposite faces of

each hollow cube are removed. Each hereby opened

side adjoins to the void space of a cube having been

completely removed. This void can be refilled by a

solid cube as base for additional synclastic sherds.

Figure 10.  Cubes as parts of an infinite polyhedron

Fig. 11 shows a compound of domes being enlarged

and connected by extensions enabling continuous

transitions. Each extension, made of four anticlastic

sherds of one pattern and of four of its mirrored

counterpart, has a large and perpendicularly plane

round opening. Even if the opening is not closed by

an adjoining enlarged dome, the extension doesn’t

need separate stiffening elements, because it is stiff

itself by its anticlastic curvature. Vice versa, Fig. 11

can be considered also as a part of an infinite anti-

clastic shell partly being closed by synclastic re-

gions: Extensions are replaced either by a cap or,

closed by a small halved dome whose sherds are

derived also by parallelism from neighboured anti-

clastic sherds.

Figure 11.  a complex shell according to Fig. 10
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Figure 12.  A cantilevering shell according to Fig. 10

A more spectacular building is shown in Fig. 12: A

dome exceeding the extent of a hemisphere emerges

from a complex shell forming courtyards and sky-

lights made of tunnel’s parts. In contrast to Fig. 11,

this structure cannot be divided into single shells,

because some of them would tilt in this case.

4. Transformations

A symmetrical shell can be transformed into a blob

shell by: exchanging chords, shaping a determining

curve deviating from a circle arc, shaping parts

anew, or by scaling.

In Fig. 13 (top, left), the right darker shell of Fig. 11

is the object of a local transformation concerning

seven sherds made transparent here. The resulted

shell’s part being more synclastic is lifted up. It has

been generated by assorting all equally oriented

pink chords of one blue curve running from the left

to the right through several sherds, in order to result

in a longer chord of a new curve having at least less

turning points. The same applied in the middle of

Fig. 13, showing this shell’s rear side. Additionally,

a transparent quadrilateral region of one open ex-

tension, consisting of four sherds each having the

same two sets of parallel planes of curves, has been

transformed by exchanging, within one of these sets

whose planes are vertical, each pink chord of both

sherds more in front by an equally oriented chord of

both rear sherds. Hereby, the inclination of the

other, that is, the transverse set of planes is changed

from 45° to –45° to the plumb. All these transfor-

mations resulted into the blob shell in Fig. 13 (bot-

tom, left) resembling already somewhat to the final

one in Fig. 2 (bottom, right). However, the meshes

are still too acute-angled; the curvature seems to

have kinks exceeding the regular ones.

Nevertheless, his shell can be reused by removing

the blue semi-transparent part in the front and by

turning the beige part 90° clockwise. The gap of the

resulted shell in Fig. 13 (top, right) is filled by a

blue semi-transparent unchanged and a mirrored

copy of the beige part. Alternatively, as you can see

below, the gap is filled by a new large and less

symmetric triangular cap being defined by the gap’s

green borders in vertical planes. These green curves

consist neither of basket-arcs nor elliptical arcs.

Figure 13.  Changing regions of a single shell

The borders of a triangular transparent cap in Fig.

14 have a curvature changing its strength too, but

they are more geometric, because the determining

curve is a basket-arc. It is composed of a white and

a yellow circle arc. Their different radii enable ad-

vantageous centric scale-trans subdivisions.

Figure 14.  Rounded cubic buildings
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The completed synclastic shell looks like a rounded

box. In Fig. 14 (bottom left), it is enlarged by two

open extensions, whose sherds differ recently.

The asymmetric shell in Fig. 14 (bottom right) is

derived from the symmetric shell: Each triangular

cap of it has been differently scaled, but it has the

same x or y scale factor like an adjoining one.

The extensions of Fig. 14 are reduced in Fig. 15,

but not by scaling. Instead of this, a yellow new

vertical plane border for the anticlastic blue sherd

rendered magnified in Fig. 15 (top. right) has been

fixed as a circle arc of equal chords. Only its first

chord and its pink last one are still parallel to the

last and the pink first one of the white determining

curve of the beige magnified synclastic sherd.

Hereby, strong kinks between inversely curved

sherds and between extensions, are avoided, that is,

smooth transitions are maintained; but a (green)

spatial cut-fusion-line had to be taken into account.

Figure 15.   Isler-like shell units and a hollow skeleton

Figure 16.   Scaling of a shell in parts and as a whole

The quadratic or cubic Isler-like units can be added

as pavilions and/or cantilevering roofs. Sherds of

the reduced extensions can be added to become

parts of a hollow skeleton.

Fig. 16  shows a sequence of a scaling being similar

to that of the shell in Fig. 14 (top, left). At first, he

object of scaling, the beige shell of Fig. 11 is cut

into parts now by the cut-fusion-line’s planes in-

stead of the planes belonging to the parallel’s sets.

The shell part’s scale factors are more uniform than

in Fig. 14 (bottom, right). The result of this scaling

is the blue shell in Fig. 16 (bottom, middle). Addi-

tionally, this shell has been scaled finally as a whole

in directions being parallel or perpendicular to the

right-hand opening’s plane. The resulted grey ob-

long blob shape on the left of it is a better approxi-

mation to that of Fig. 2 (bottom, right) than that in

Fig. 13 (bottom, left).

5. Vaulting symmetric Polyhedra

5.1. Packings of Polyhedra

Infinite polyhedra dividing space into equal halves

can be made of other polyhedra than of cubes like

in Fig. 10, if these polyhedra are able to be densely

packed likewise.

Figure 17 is based on tetrahedra and truncated tet-

rahedra. The beige anticlastic sherd’s pattern of the

blue infinite anticlastic surface’s part is derived

from the blue synclastic pattern by parallelism

again. The infinite surface enclosing two inter-

woven tunnel-systems each having orange centre-

lines being parts of a diamond’s crystal grid has less

application options because there are less options to

cut out useful parts by planes being perpendicular to

each other. That is why the results are more un-

usual. The shell in Fig. 17 (bottom right) can be

considered either as a barrel-vault having an enor-

mous bump above exceeding even the ground area

or, as a dome having two flat open extensions.

The parts of Fig. 17 have been rotated differently in

order to use them within the shells of Fig. 18: The

triangular shell (top, left) is made of three semi-

transparent cushion-roofs around a non-transparent

tunnel region whose centreline is vertical. This re-

gion has yellow straight-lined borders being the

outlines of the top and bottom polygon of an imag-

ined octahedron being oriented as an antiprism.
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Figure 17. Shells based an tetrahedra and truncated tetra-

hedra as parts of an infinite polyhedron

The less symmetrical shell (bottom. left) has two

trumpet-like, but angular shaped, enlarged exten-

sions having openings in planes being inclined to

the ground. Its third opening on the left has been

changed by replacing the uniform blue anticlastic

sherds by beige ones of a new pattern and its mir-

rored counterpart, enabling not only an useful ex-

tension whose opening’s plane is vertical again

here, but also plane shell’s borders on the ground.

Figure 18.   Sculptural shells using parts of Fig. 17

Fig. 19. is based on octahedra that, together with

cuboctahedra, could be densely packed. The grids

of tunnel-centrelines are cubic again, but they are

rotated 45° around a horizontal axis running from

the left to the right. The grids’ nodes don’t coincide

with the potential centrepoints of synclastic shell

regions like the rendered triangular semi-

transparent cap. The anticlastic sherds belong to an

infinite surface that is topologically equivalent to

that of  Fig. 10, but they have other proportions.

The results shown in Figs. 20 and 21 are unusual

too. Here, the initial orientation of the shell’s parts

has not been changed. Hereby, the triangular cush-

ion-roof in Fig. 20 is in a sloped position to the

horizontal ground. The semi-transparent shell

neighbouring on the left resembles to that in Fig. 17

(bottom, right), but its bump above is flatter. Be-

cause their open extensions are flat, all shells of

Figs. 20 and 21 are restricted to be only roofs.

Figure 19.   Octahedra as parts of an infinite polyhedron

The beige part of a shell in Fig. 20 is reused in trip-

licate in Fig. 21 (top, left) in order to form a beige

roof having northward skylights. Besides in Fig. 21

(top, right), the blue semi-transparent shell of Fig.

20 had been scaled and tripled in order to result in a

blue undulated flat barrel-vault. The initial form

hardly can be recognised, because the scale factors

of both scaling directions were so enormously dif-

ferent that the former oblong side is now the trans-

verse side of the single shell as a module.

Figure 20.   Shells using parts of Fig. 19
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Figure 21.  Shell’s parts of Fig. 20 being multiplied and/or

scaled to be a part of an undulated barrel vault

5.2. Larger Symmetric Polyhedra

Despite a cube is the most applicable basic polyhe-

dron, other very symmetric polyhedra like Platonic,

Archimedian, or geodesic polyhedra can be the

geometrical base for novel spherical solitary shells

being suited to replace geodesic domes.

An example of a Platonic polyhedron is the dodeca-

hedron in Fig. 22 (bottom, left). Only one magni-

fied transparent eighth of it (top, left) having been

cut out along three planes being perpendicular to

each other serves as a base for one synclastic

sherd’s pattern and two differing anticlastic ones.

Figure 22.   A dome based on a  pentagonal dodecahedron

Here again, the border’s planes of the synclastic

sherds and the anticlastic double-sherds are kaleido-

scopically mirroring these sherds in order to form a

dome shell. Optionally, all other pentagonal entire

or halved caps could be replaced by extensions in

order to form additional skylights or openings.

The soccer-ball-like truncated icosahedron in Fig.

23 is an Archimedian Polyhedron. The sherd of the

hexagonal cap has been generated at first, because it

is larger than that of the pentagonal one. The devia-

tions of the nodes from the spherical surface are

smaller in a smaller cap.

The green half border-arc of the hexagonal cap is

only a resulted one; but for its part, it determines

then the semi-transparent pentagonal cap. Only the

cap generated at first can have a centric scale-trans

subdivision saving mesh patterns, because no one

curve of the second cap is equidistantly subdivided.

The fusion-meshes’ black “lines of altitude” are still

parallel to the plane of their respective basic poly-

gon, but these planes are sloped or even vertical.

Figure 23.  A dome part based on a  truncated icosahedron

The stellated icosidodecahedron in Fig. 24 (bottom,

left) is a geodesic polyhedron acting itself as a basic

polyhedron. It is composed of equilateral triangles

and flat pentagonal pyramids, whereas each pyra-

mid consists of five isoceles triangles.

A cap vaulting a basic isoceles triangle needs three

different sherd’s patterns and three mirrored coun-

terparts. Its zenith is situated on a straight line run-

ning from the shell’s centrepoint through the green

gravity point of an isoceles triangle. In contrast to

all other caps before, this line is not perpendicular

to the penetrated basic polyhedron. Two of such

lines define the plane of the sherds’ green border,

including the red endpoint of a yellow second de-

termining curve. The first, white curve determines

the sherd of the equilateral cap in same time.
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Figure 24.  A dome part based on a  geodesic polyhedron

5.3  Prisms

Like a cube, prisms have vertical lateral faces. The

sherd’s formats of the top cap and the lateral cap

have to differ in each case, because the lateral and

the top polygon differ now The basic prisms are

rendered halved horizontally by the ground plane.

The basic prism in Fig. 25 is formed by reducing

the number of side polygons being still quadratic

from four to three. The anticlastic sherds are re-

duced to form open extensions like the border re-

gions of an Isler shell. Red meshes are correspond-

ing in pairs by parallelism again. Like in Fig. 15, a

yellow curve determines the upper anticlastic sherd

of the Isler-like border region, but now, each pink

chord of the yellow curve has been fixed to be par-

allel to the corresponding pink chord of the white

determining curve. In contrast to all precedent ex-

amples of parallelism, its length is exactly halved.

Figure 25.   Dome and Isler-like shells around prisms

In Fig. 25 (bottom, left), below the reduced anti-

clastic double-sherd, there is an unreduced trans-

parent double-sherd too, whose rear blue coloured

sherd can be a part of a triangular cushion roof.

Such double-sherds form the diminished beige tun-

nel-system in Fig. 25 (bottom, right), having a pla-

nar hexagonal grid of tunnel-centrelines.

The asymmetry of prisms can be increased. In anal-

ogy to Fig. 3, but now based on prisms, several

modularly sectored shell’s parts of Fig. 26 can be

combined to result in a plurality of varying shells

being shown in Fig. 27. These shells are not flat,

but steeply sloped. Each different basic polygon is

now the top polygon of a prism. Like a regular ba-

sic polygon, each prism consists still of modular

sectors being rendered here as alternating between

solid and opaque. Their angles are now those occur-

ring in the well known quadrat and in a regular

pentagon,  instead of a triangle or hexagon in Fig. 3.

Figure 26. Six sectored shell’s part’s patterns for Fig. 27

By combining top cap’s sherds, even if they base on

different modular prism sectors, double-sherds and

their fusion-meshes are no longer restricted to be

symmetric. All determining cut-fusion-lines are

congruent. The fusion-meshes’ lines of altitude are

still oriented normally to the planes of these curves.

Each of the cushion-roofs in the first row of arrayed

shells in Fig. 27 consists only of the upper part of

the shown shell’s parts, being located only above

the top polygon. Each shell of a column of arrayed

shells has an equal top cap. A shell of the middle

row differs from the shell below by the number of

openings. The top polygon of the basic prism is,

from the left to the right: a pentagon, a kite, a rec-

tangle, an asymmetric, and a symmetric trapezoid.



Double-Curved Shells of Flat Quad Meshes

 Florian Tuczek 2006  11

Figure 27.   Shells made of a few sorts of shell’s parts

6. Vaulting an Irregular Polyhedron

To achieve a pure blob surface, the following small

step from an irregularly trapezoidal prism to an

irregularly quadrilateral one as a basic polyhedron

had to be done. This basic solid can be seen sepa-

rately diminished in Fig. 28 (top, left).

The generating process of the top cap in Fig. 28

combines characteristics of that in Figs. 7 and 8.

According to Fig. 8, the red planes of one of each

sherd’s both sets of crossing curves are inclined

instead of being parallel to each other and, instead

of being perpendicular to the ground like in Fig. 7.

The red planes converge again in order to intersect

all in one yellow horizontal straight line. According

to Fig. 7, the planes of each of both planes’ sets of a

potential cushion-roof’s anticlastic sherd are paral-

lel to each other. However now, the planes of one of

them, rendered here as grey triangles in the front,

are inclined in parallel to a plane that includes not

only the red meeting point of all shell’s border’s

planes as reference point below the zenith, but also

a beige line of the top polygon, being an edge of the

basic polyhedron. Parts of the synclastic sherd’s

resulted green borderline have been transferred in

order to end in blue points of the black straight cut-

ting line. These points are situated within the verti-

cal planes of the synclastic sherd’s curves.

For the anticlastic sherd, the translational subdivi-

sion has been selected, because it looks more regu-

lar there. That is why small oblong tapered quad

meshes are avoided that could occur either by trans-

ferring each chord in parallel from one existing

scale-trans sherd to the new other one or, by fixing

additional inclined radiating planes on the blue

points, instead of parallel ones. Within a synclastic

sherd, a scale-trans subdivision looks more regular,

because the meshes are less acute-angled.

Figure 28.  Cap of the blob shell and adjoining sherds

Both determining curves (white, yellow) are situ-

ated within a vertical plane including the zenith and

the top polygon’s vertex in the front on the right.

These curves are derived from two coplanar sherds’

borders of a the beige shell in Fig. 11 based on a

cube, by scaling them horizontally only, keeping

hereby the altitude of their nodes. Like in Fig. 7, the

orange nodes of different curves have equal alti-

tudes. The white, upper determining curve is the

cut-fusion-line between the opaque blue and the

transparent sherd. Its coplanar continuation below

by a yellow, second determining curve can be seen

in Fig. 29 as the left border of the beige right-hand

lateral half cap.

Figure 29.  The final blob shell having open extensions
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Fig. 29 shows the complete final blob shell being

identical to that of Fig. 2 (bottom, left). In Fig. 29

(top, left) you can see a superimposed arrangement

of all shell’s parts forming the shell variations of

Fig. 2.

To derive a frontal extension’s lower lateral anti-

clastic sherd from a synclastic one in Fig. 29, pink

chords of blue curves within common horizontal

planes correspond in pairs by parallelism. Each blue

node of this anticlastic sherd’s green cutting line

being spatially curved has to be situated in a verti-

cal plane being oriented in parallel to the basic

polyhedron’s front polygon and being fixed on an-

other blue node of the potential cushion-roof’s

sherd’s horizontal borderline being straight further

on. This black straight line is not a resulted one, but

a determining one. If it would have been turned

slightly clockwise around the upper right frontal

vertex of the top polygon, the frontal extension

would have become less deep, while the left lateral

extension would have become deeper. The shape of

the whole shell would have been stretched within

the direction from the left to the right.

At last, the semi-transparent blue sherds filling

wedge-shaped gaps have been generated. These

gaps can be imagined as a result of plastically de-

forming (bottom right) a beige shell’s weak frontal

cap having been cut twice along a red cutting line

before, whose resulted three parts are then dragged

apart from each other in order to become anticlastic.

However in detail, these blue semi-transparent

sherds are generated as shown on the shell’s left

extension: The turquoise lines had to be found, as

can be seen in Fig. 29 (bottom, left): Three lower

and three upper copied cut-triangles have been dou-

bled to result into parallelograms. Then, each lower

parallelogram was copied and moved to the respec-

tive upper one and attached on a turquoise common

node there. Each intersecting line of two parallelo-

grams is a turquoise line being part of a curve of

one set of curves of the blue semi-transparent

sherds.

7.  Materialisation

Each previous example of a faceted shell is shown

only as a thin surface of flat areal meshes without

any thickness, similar to metal sheets. However,

thickness is necessary indeed, when each mesh, as a

structural insulated panel, shall transfer completely

the loads of the shell as a self-supporting envelope.

A panellised blob shell’s structural thickness is

shown in Fig. 30 (top, left) by the red-coloured free

border-arc in the front. The same view below shows

a grid-shell according to the same interdependent

outward and inward surfaces.

Figure 30.   A panellised structure and  a grid shell

In Fig. 31, thick virtually transparent panels are

mitred in order to achieve exact node situations

without offsets. Each node of the inward shell sur-

face is connected to a respective node of the out-

ward shell surface by a short straight line. The cor-

ners of either four thick panels or of four linear

elements like flat bars represented by the oblong

grey edge-faces can meet there. These edge-faces

are generated starting on the zenith The first short

line on the zenith is situated within a long vertical

line above the red reference point.

Figure 31.  A blob shell showing  constructional thickness
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Within each of the vertical planes intersecting in

this long line, the orange edge-faces along a curve

of chords are coplanar and symmetrically mitred by

the short lines - in contrast to the other edge-faces

(red) out of these vertical planes, excepted these of

the ground plane. A disadvantage of this arrange-

ment of edge-faces is that each thick panel has a

slightly differing thickness from another one.

In a free-formed shell, no one single panel belongs

to the same pattern like any other one. Usually, this

would cause confusion on site. Fortunately, each

described shell can be assembled in rows being

closed like rings. Hereby, one single number on

each panel is sufficient to describe its final position.

Fig. 33 shows these rings or rows. The assembling

process could begin on the ground by a small cap of

four panels around the zenith. This cap could be

lifted by a crane or a column. The shell would in-

crease and be lifted row by row without a centring

or a scaffold.

Figure 32.  The final blob surface consisting of rings

8. Conclusions

By increasing the asymmetry and the spatial com-

plexity of the illustrated examples on the one hand,

and by diminishing the degree of symmetry on the

other, finally an exclusively quad-meshed blob shell

in Fig. 32 being robust by its intended shape in

contrast to Fig. 1 was generated. The next step of

complicating could be to incline the basic prism’s

lateral faces. By this, the prism would become a

truncated pyramid or a parallelepiped.

It would be interesting to search, if there are still

shell shapes which cannot consist of flat quad

meshes even by a combination of the new subdivi-

sion with conventional ones. The challenge for an

architect using the novel subdivision is to find the

right basic shape and to fix several parameters fit-

ting to the intended shell shape.

A software generating automatically a quad-meshed

blob surface by initially given or interactively

changeable parameters (basic and circumscribing

polygon(s), basic polyhedron (polyhedra), centre-

point(s), determining curve(s), degree of subdivi-

sion, translational or scale-trans subdivision) has

still to be developed.

Indeed, Catmull-Clark subdivision surfaces often

applying in computer software have a topologically

identical mesh pattern on a basic-polygon’s convex

trivalent vertex situation like on the orange point in

Fig. 9. However, the meshes are in general not flat

and in parts very acute-angled [4].

The structural analysis of the described faceted

shells seems to be not even trivial, but simple scale

models have proven their rigidity as a plate struc-

ture.
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